$\frac{\text { Vector Addition and Scalar }}{\text { Multiplication }}$

EQ: How can I operate with a quantity that has
both magnitude and direction?
MCC9-12.N.VM. 4 Add and subtract vectors.
MCC9-12.N.VM. $4 a$ Add vectors end-to-end, component-wise, and by the parallelogram rule. Understand that the magnitude of a sum of two vectors is typically not the sum of the magnitudes.

MCC9-12.N.VM.4b Given two vectors in magnitude and direction form, determine the magnitude and direction of their sum.

MCC9-12.N.VM.4c Understand vector subtraction v - w as $v+(-w)$, where $(-w)$ is the additive inverse of w with the same magnitude as w and pointing in the opposite direction. Represent vector subtraction graphically by connecting the MCC9-12.N.VM. 5 Multiply a vector by a scalar.

MCC9-12.N.VM.5a Represent scalar multiplication graphically by scaling vectors and possibly reversing their direction; perform scalar multiplication componentwise, e.g., as $c\left(v_{x}, v_{y}\right)=\left(c v_{x}, c v_{y}\right)$.
MCC9-12.N.VM.5b Compute the magnitude of a scalar multiple cv using direction of $c v$ is either along v (for $c>0$) or against $v($ for $c<0$).

Vector Addition and Scalar Multiplication

Let $\mathbf{u}=\left\langle u_{1}, u_{2}\right\rangle$, and $\mathbf{v}=\left\langle v_{1}, v_{2}\right\rangle$ be vectors and let k be a scalar (a real number).

$$
\begin{gathered}
\mathbf{u}+\mathbf{v}=\left\langle u_{1}+v_{1}, u_{2}+v_{2}\right\rangle \\
k \mathbf{u}=k\left\langle u_{1}, u_{2}\right\rangle=\left\langle k u_{1}, k u_{2}\right\rangle
\end{gathered}
$$

Resultant Vector - the vector that is the result of operations with vectors.

Nov 6-8:25 AM

Nov 30-1:59 PM

Nov 30-1:59 PM

Nov 5-10:34 PM

$4\langle 4,-6\rangle$
$4\langle-2,-3\rangle$
$4\langle 4,-6\rangle+4\langle-2,-3\rangle$

Nov 5-10:34 PM

Nov 5-11:03 PM

Nov 30-1:40 PM
bearing $=$ clockwise from North

Nov 5-11:31 PM

Suppose that you swim across a stream that has a $5-\mathrm{km} / \mathrm{hr}$ current.
a. Find your actual velocity vector if you swim perpendicular to the current at $3 \mathrm{~km} / \mathrm{h}$.
b. Find your speed through the water if you swim perpendicular to the current but your resultant velocity makes an angle of 34° with the direction you are heading.

