Unit 5-Matrices	
What is the purpose of this unit?	EQ: How can we use matrices to solve real life problems?
What vocab do I need?	Vocabulary: matrix, determinant, elements, dimensions, scalar, inverse matrix, identity matrix
Standards	MCC9-12.N.VM.6 Use matrices to represent and manipulate data, e.g., to represent payoffs or incidence relationships in a network. MCC9-12.N.VM.12 Work with 2×2 matrices as transformations of the plane, and interpret the absolute value of the determinant in terms of area

Jul 18-1:49 PM

A. Determinant of a 2×2 matrix

How do I The determinant of a 2×2 matrix is the find the difference of the products of the determinant of a 2×2 ? elements on the diagonals.
$\operatorname{det}\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-c b$
In other words:

Determinants

What is the purpose of this lesson?
EQ: How do we evaluate the determinants of matrices?

Vocabulary:

Determinant - a real number associated with a square matrix. The determinant of a matrix A is denoted by $\operatorname{det} A$ or $|A|$.

Jul 18-2:34 PM

Evaluate the determinant of the matrix
a) $\operatorname{det}\left[\begin{array}{ll}5 & 8 \\ 9 & x_{4}\end{array}\right]=5(4)-9(8)=-52$
b) $\operatorname{det}\left[\begin{array}{ll}3 & -4 \\ 7 & -2\end{array}\right]=3(-2)-7(-4)=22$

Jul 18-2:37 PM

B. Determinant of a 3×3 matrix

How do I
find the
determinant
of a 3×3 ?

Rewrite the first two columns to the right of the determinant. Add the products of the leading diagonals and subtract from this the products of the opposite diagonals.

Jan 16-3:18 PM

$$
\begin{aligned}
& \text { f) }\left|\begin{array}{ccc}
-1 & 3 & 5 \\
0 & x & 3 \\
-2 & 2 & *
\end{array}\right|=x-4 \\
& -1 \cdot x \cdot x+3 \cdot 3 \cdot-2+5 \cdot 0 \cdot 2-(-2 \cdot x \cdot 5 \\
& +2 \cdot 3 \cdot-1+x \cdot 0 \cdot 3)=x-4 \\
& -x^{2}+(-18)+(-10 x+6)=x-4 \\
& -x^{2}+10 x-12=x-4 \\
& -x+4-x+4 \\
& -x^{2}+9 x-8=0 \\
& -\left(x^{2}-9 x+8\right)=0 \\
& -(x-8)(x-1)=0 \\
& x=8 \quad x=1
\end{aligned}
$$

1. The vertices of triangle $D O G$ are $D(-4,-1), O(3,2)$ and $G(4,6)$.

Find the area of $\triangle D O G$.

$$
\begin{aligned}
& A= \pm \frac{1}{2}\left|\begin{array}{ccc}
-4 & -1 & 1 \\
3 & 2 & 1 \\
4 & 6 & 1
\end{array}\right| \\
& =\frac{1}{2}[(-4 \cdot 2 \cdot 1+(-1) 1 \cdot 4+1 \cdot 3 \cdot 6)-(4 \cdot 2 \cdot 1+ \\
& 6 \cdot 1 \cdot-4+1 \cdot 3 \cdot-1)] \\
& = \pm \frac{1}{2}[-8-4+18 \cdot(8-24-3)] \\
& = \pm \frac{1}{2}(6-(-(9)) \\
& = \pm \frac{1}{2}(25) \\
& \\
& =\frac{25}{2}
\end{aligned}
$$

Evaluate:
e) $\left|\begin{array}{cc}2 & -4 \\ 3 & x\end{array}\right|=26$

$$
2 x-(-4 \cdot 3)=26
$$

$$
2 x+12=26
$$

$2 x=14$

$$
x=7
$$

Application of Determinants: Finding the area of a triangle using determinants

Given the vertices of a triangle are:

$$
\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right), \text { and }\left(x_{3}, y_{3}\right)
$$

then its area is found by:

$$
A= \pm \frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right| \begin{aligned}
& \text { where the } \pm \\
& \text { indicates the } \\
& \text { appropriate sign to } \\
& \text { yield a positive } \\
& \text { value }
\end{aligned}
$$

Jan 11-11:39 AM
2. The vertices of triangle CAT are $C(-8,10), A(6,17)$ and $T(2,-4)$.

Find the area of $\triangle C A T$.

