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for students

The Algebra Standard of Principles and Stan-
dards for School Mathematics (NCTM 2000)
suggests that the mathematics curriculum for

grades 9–12 include the use of “a variety of symbolic
representations, including recursive and parametric
equations, for functions and relations” (p. 296). Para-
metric equations are very useful for representing
graphs of curves that cannot otherwise be expressed
as functions that define y in terms of x. The underly-
ing idea of working with parametric equations is to
express both x and y as functions of a third variable,
called the parameter. The parametric equations are
those functions assigned to x and y. The variable, typ-
ically t for time, makes parametric equations practical
for modeling situations involving motion of an object
along a given path by providing the coordinates of po-
sitions (x, y) of the object over time.

WORKSHEET 1: THE BUG RACE
In order to guide students in developing the algebraic
representation that fits the scenario in worksheet 1,
it may be necessary to provide the general form of
the distance equation, D = R • T, where D represents
distance traveled, R represents rate, and T repre-

sents time. This formula can serve as a discussion
platform for determining the necessary parameters
to model the movement of Bug 1 and Bug 2. Letting
T represent the travel time of Bug 1 in this scenario,
the distance traveled by each bug can then be mod-
eled by DBug 1 = 12T and DBug 2 = 18(T – 1). On the
graphing calculator, the distance traveled by the bugs
is modeled in the horizontal direction, with the dis-
tance equations stored in functions assigned to x. In
this case the functions for the corresponding y-coor-
dinates need only use a constant to model the bugs
proceeding on parallel linear paths.

Students need to have calculators in parametric,
simultaneous mode. After setting these appropriate
mode options, students can then press Y= and notice
that the calculator displays a setup that allows the stu-
dents to input both components of the parametric
model for each bug. Pressing the X,T,θ,n button that
normally produces X in function mode now automati-
cally produces T. Figure 1 shows the mode, paramet-
ric equation setup, and an appropriate window for
this scenario. Upon pressing GRAPH, students can
watch the parametric representation as Bug 1 begins
moving along the upper path, followed by Bug 2 be-
ginning its movement on the lower path a short while
later. Pressing ENTER pauses the plotting of a graph
so that students can estimate that Bug 2 draws along-
side and passes Bug 1 somewhere between distances 
x = 35 and x = 40. Students can compare this visual
information to numeric information accessed by
pressing 2nd TABLE and scrolling through values to
determine that both Bug 1 and Bug 2 are at a distance
of x = 36 inches from their respective starting points
at the same time (fig. 2). Students may also use the
TRACE feature on the completed graph (fig. 3).
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By setting the equations equal to each other to
solve for the time at which the bugs are at exactly
the same distance from their starting points, stu-
dents can see how one could view this situation
from a purely symbolic format. Students will make
connections between previously addressed
processes and new concepts involving parametric
equations and will begin to gain a sense of the
power of parametric modeling with this problem.

WORKSHEET 2: NONLINEAR PATH 
OF A BUG’S MOTION
The second worksheet considers a bug’s path as the
bug moves on the xy plane in time t seconds as
modeled by

To answer the first question on the student
worksheet, students can use t = 0 to represent the
start of the problem and thus substitute 0 for t in
the x- and y- components of the model. Since
4cos(0) + 5cos(3 • 0) = 9 and sin(3 • 0) + 0 = 0, the
bug starts at the point (9, 0) in the xy plane. Stu-
dents create a table and plot points showing the
bug’s position and connect the points to create a
rudimentary path of the bug’s motion. Figure 5
shows the resulting graph of the bug’s motion.

Having students complete the graph by hand
makes it easier for them to choose window values
on the calculator. I ask students to press WINDOW
and consider appropriate values in order to create
the same graph that they created by hand. Thus,
they set the window values shown in figure 4.

When the “bug” stops moving, the resulting
graph is the same as figure 5. My students have
commented that the graph looks a bit “jiggity-
jaggity” and have wondered if the graph could be
“smoothed out.” Such questions from students ex-
cite me because they demonstrate interest in the
problem and open avenues for further investiga-
tion. Through experimentation with their calcula-
tors, students find that both changing ΔTbl in table
settings to 0.1 and changing the Tstep of the win-
dow settings to 0.1 yield a graph smoother than the
original. Changing the same two settings to 0.01
yields even more information about the bug’s loca-
tion over the same 13 seconds and noticeably slows
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Fig. 1 Calculator settings for the bug race

Fig. 2 The bugs are side by side 36 inches from the starting point.

Fig. 3 The trace function can also be used to determine when the bugs are along-

side each other.

Fig. 4 Window for the nonlinear path of the bug in work-

sheet 2

Fig. 5 Calculator graph of the bug in worksheet 2 with a 

t-step of 1

Fig. 6 Graph of the same bug in worksheet 2 with a t-step

of 0.1
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down the process of plotting the graph. The graph
with a time increment setting of 0.1 is shown in
figure 6.

WORKSHEET 3: PATHS OF 
THREE BUGS’ MOTION
After completing worksheets 1 and 2, my stu-
dents are usually excited to see the paths the
three bugs leave on the xy plane. Thus, I leave it
to them to experiment with their calculators to
figure out which path on a given static graph (fig.
7) belongs to which bug, asking students to label
each path in the given graph with an A, B, or C,
as appropriate. Figure 8 shows calculator set-
tings that match the given graph well.

Is there a way to tell which graph matches
which bug without doing the graphing? Students
should look for similarities and differences in the
models. The models for Bug B and Bug C look simi-
lar and both produce straight lines as opposed to
the curve produced by the model for Bug A. I take
advantage of students’ thoughts and questions to
introduce the idea that parametric equations can be
rewritten as relationships involving only x- and y-
variables (without the parameter of time) through
algebraic substitution. For example, using the
model for Bug B, we can rewrite x = 3t as t = x/3
and then replace t with x/3 in y = 5t to end up with
y = 5(x/3) or y = (5/3)x. Similarly, the model for

Bug C can be rewritten as y = (4/3)x. Then, using
what students already know about slopes of lines,
they can determine that the steeper of the two lines
provided in the graph must belong to Bug B. The re-
maining path, the path of Bug A, is part of an el-
lipse generated by its given model, which can be ex-
pressed by y = 5sin(cos–1(x/8)).

Figure 9 displays the setup needed to plot Bug
A’s and Bug B’s paths simultaneously. The result-
ing plots in motion show that Bug B gets out of Bug
A’s path before Bug A reaches the static graph’s
point of intersection.

Students can quickly determine that Bug B and
Bug C do not collide after leaving the same starting
point, because of the nature of their linear paths at
different slopes. On the other hand, it takes further
investigation to determine whether or not Bug A
and Bug C collide, and students may need to turn to
other methods for an answer. Some of my students
have used the table, scrolling to look for matching
position values for A and C. Note that this can be
done in pairs, with one student viewing A’s posi-
tion values while the other student views those of
C, since the calculator does not show all values on
the same screen (fig. 10). In fact, at t = 1.13 sec-
onds, the bugs’ positions are very close. In this way,
some students claim that Bug A and Bug C collide
at t = 1.13 seconds.

It is interesting to note that the calculator fea-
tures do not permit finding points of intersection
in parametric mode as can be done in function
mode. Switching back to parametric mode and
scrolling through the table to look for this point
reveals that Bug A arrived at the point at 1.131
seconds and Bug C arrived at the point at 1.133
seconds. Thus, students can conclude with some
justification that Bug A and Bug C do collide at t =
1.13 seconds.Fig. 7 Which graph corresponds to which equation in 

figure 8?

Fig. 8 Calculator settings for the graph in figure 7

Fig. 9 Calculator settings for graphing Bug A and Bug B simultaneously
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SUMMARY
Heid et al. (1995) summarize that graphing tech-
nologies allow a ready visualization of relation-
ships; allow for finding accurate solutions that
may not be easily found through symbolic manip-
ulation alone; provide numerical and graphical so-
lutions that support results found using algebraic
manipulation; promote exploration by students
and enhance their understanding; encourage the
exploration of relationships and mathematical
concepts; and promote “what if” modeling of real-
istic situations. These worksheets allow students
to explore the relationship of an object’s position
with respect to time. Students are thus able to rec-
ognize the benefit of using parametric equations to
determine not only where an object has been, but
also when the object was at a given position on its
path. The three problems described above also in-
corporate many of the advantages of integrating
the use of graphing calculators as an introduction
to parametric equations. The graphing calculator
technology makes the problems accessible, under-
standable, and even fun for students at the 9–12
grade level.

SOLUTIONS
Worksheet 1
1. 12T and 18(T – 1)
2. student hypothesis
3. horizontal parallel paths along y = 1 and y = 3
4. Bug 2
5. t = 3 hours, distance, x = 36 inches from the start

Worksheet 2
1. (9, 0)
2. (–2.79, 1.14)
3. See figure 11.
4. See figure 4.
5. See figure 6.
6. The added points create a smoother graph.

Worksheet 3
1. B steepest linear path, A curved
2. No. See notes.
3. No, nature of linear paths.
4. Yes. See notes.
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Fig. 10 The calculator’s screen is not wide enough to see

more than these three columns.

Fig. 11 Table for bug positions at times t = 1, 2, 3, . . . , 13
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Introducing Parametric Equations through Explorations Sheet 1

Suppose two bugs are crawling along linear paths. Bug 1 begins a trek toward a point 70 inches from where he be-
gins, traveling at a speed of 12 inches per hour. Bug 2 travels at a speed of 18 inches per hour but leaves 1 hour
after the other bug from a similar starting position on a parallel path. Note: distance = rate • time (D = R • T).

1. Given that T represents Bug 1’s travel time, what formulas represent the distance each bug travels over time?

DistanceBug 1 = _________ • ___________
Rate             Time

DistanceBug 2 = _________ • ___________
Rate             Time

2. Which bug do you think will win the race? Why?

Let’s watch the race!

3. The Y equations are set to constants to show the bugs crawling across the screen. Why is there no T vari-
able in the Y equation for each bug?

4. Graph the paths of the bugs in motion. Which bug wins the race?

5. At what time are the bugs the same distance from their starting points along their paths? In other words,
when are the bugs alongside each other? 
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Introducing Parametric Equations through Explorations Sheet 2

Consider a bug’s nonlinear path as the bug runs around on the xy plane in time t seconds as modeled by

(Use MODE: RADIAN and PARAMETRIC)

1. Where does the bug start (what are the coordinates of its initial position)? 

2. Where is the bug 1 second after starting?

3. Build a table for the bug’s location at times t = 2, 3, 4, . . . , 13 seconds.

4. Use the table of values from question 3 to graph the bug’s path from
point to point, starting at t = 0 and ending at t = 13.

5. How should we adjust the graph settings if we want to see the bug’s 
path in “slow motion” by looking at where it is every tenth of a
second instead of every second? Show the new graph below.

6. How does the graph of the bug’s path at every hundredth of a second compare to the graph of the bug’s path
at every tenth of a second? 
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Introducing Parametric Equations through Explorations Sheet 3

Now consider three bugs’ paths as the bugs run around on the xy plane in time t seconds as modeled by

Bug A Bug B Bug C

1. Which path on the graph is Bug A’s path? Which is Bug B’s path? Bug C’s path? Label each path in the picture
with an A, B, or C, as appropriate.

If all three bugs start moving from their initial positions at the same time:

2. Do Bug A and Bug B collide? Justify your answer.

3. Do Bug B and Bug C collide? Justify your answer. 

4. Do Bug A and Bug C collide? Justify your answer.
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