Solving Trig Equations Part 2

Quadratic Trig Equations - *Reminder, $\sin^2 x =$ Solve $0 \le x < 2\pi$: $\sin^2 x - \frac{1}{2} = 0$ $\cos^2 x$

$$\sin^2 x - \frac{1}{4} = 0 \qquad \qquad \cos^2 x - 1 = 0$$

Last day we solved linear equations, what about factored ones $0 \le x < 2\pi$?

$$(\cos x - 1)(\tan x - 1) = 0$$
 $2\cos x \left(\cos x + \frac{1}{2}\right) = 0$

So far our newest strategy is to factor equations in order to solve them: One thing that can help is making a substitution

Trig expression

$$\sin^2 x - 3\sin x$$

 $\csc^2 x - 3\csc x - 28$
 $2\cos^2 x + 7\cos x - 4$
Solve by factoring $0 \le x < 2\pi$:

 $2\sin^2 x - \sin x = 0$

 $\sin x \cos x = 2\cos x$

*Be careful with the tangent ratio! $\tan x \sin x + \tan x = 0$ Solve by factoring and state the general solution: $\cos^2 x - \cos x - 2 = 0$ $2\sin^2 x - 3\sin x + 1 = 0$

Some equations are very difficult to solve algebraically:

There are two methods for solving graphically that are commonly used,

1) method of intersection 2) intercept method

I prefer the intercept method because it is easier to set up your window

1) Set up the equation

2) 2^{nd} Trace (calc)

3) 2: zeros

4) window

 $x \rightarrow$ should match the domain

 $y \rightarrow$ can be -1 to 1 (anything that shows the x-axis)

Ex.

Solve graphically $0 \le x < 2\pi$:

 $\cos^3 x - 3\cos x + 1 = 0 \qquad \qquad \sin x = \frac{1}{x}$

Solving graphically with exact values:

It is possible to solve exactly with the graphing calculator. The adjustment we have to make is on the x-scale:

Let's look at the special angles:

 $0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}, \dots$ What is the LCD of the special angles?

If we set the x-scale to the LCD, then we can see which 'tick' mark the graph crosses at. Ex.

Solve exactly $0 \le x < 2\pi$ $2\sin^2 x = 1 - \sin x$

Practice

1) Solve: $\cos^2 x = \frac{3}{4}$ $\sin^2 x - \frac{1}{4} = 0$ $4\cos^2 x - 1 = 0$

2) Solve: $2\sin^2 x + \sin x = 0$ $\sin^2 \theta = 2\sin \theta$

$$2\cos^2 x = \sqrt{2}\cos x \qquad \qquad \tan^2 x + \sqrt{3}\tan x = 0$$

 $\cos x \tan x - \cos x = 0$

3) Solve exactly where possible, otherwise to 2 decimal places: $\sin^2 x - \sin x - 2 = 0$ $\cos^2 x - 6\cos x + 5 = 0$

$$2\sin^2 x - \sin x - 1 = 0 \qquad 2\cos^2 x + 3\cos x = -1$$

 $2\cos^2\theta + 5\cos\theta - 3 = 0$

4) Solve with a graphing calculator to 2 decimal places for the domain given: $2 \sin x = \cos 3x$, where $0 \le x < 2\pi$ $\sin x - x^2 = \log x (0 \le x < \pi)$

5) Solve exactly using your graphing calculator $(-\pi \le x < \pi)$: $\sqrt{3} \tan^2 x + \sqrt{3} \tan x + \tan x + 1 = 0$ $2\cos^2 x - \sqrt{2}\cos x + 2\cos x - \sqrt{2} = 0$