Warm-up

1. Find $\sqrt{25}=5$
2. Solve $\sqrt{x^{2}}=\sqrt{4} \quad x= \pm 2$
3. explain the difference

Find all 6 Trig. Functions given point $(2,3)$

$$
\begin{gathered}
a^{2}+b^{2}=c^{2} \\
2^{2}+3^{2}=c^{2} \\
4+9=c^{2} \\
13=c
\end{gathered}
$$

$$
\begin{aligned}
& \sin \theta=\frac{3}{\sqrt{13}} \cdot \frac{\sqrt{13}}{\sqrt{13}}=\frac{3 \sqrt{13}}{13} \quad \cos \theta=\frac{2}{\sqrt{13}} \cdot \frac{\sqrt{13}}{\sqrt{13}}=\frac{2 \sqrt{13}}{13} \\
& \tan \theta=\frac{3}{2} \quad \sec \theta=\frac{\sqrt{13}}{2} \quad \csc \theta=\frac{\sqrt{13}}{3} \\
& \cot \theta=\frac{2}{3}
\end{aligned}
$$

c. $\tan \Theta=-15 / 8_{2 \alpha j}$
 in quadrant IV

d. $\csc \Theta=4$, in quadrant II

$\sin \theta=\frac{1}{4}$
$\cos \theta=-\sqrt{11}$
$=\frac{17}{-15} \tan \theta=\frac{-\sqrt{15}}{45}$
$\begin{array}{ll}\cos \theta=\frac{8^{17}}{17} & \sec \theta=\frac{17}{8} \quad \sec \theta=-\frac{4 \sqrt{15}}{15} \\ \tan \theta=\frac{-15}{8} \cot \theta=\frac{-8}{15} \quad \cot \theta=-\sqrt{15}\end{array}$

1) $\cot \theta=-\frac{1}{2}$ and $\cos \underset{\theta-0}{ } \frac{1}{\theta}$

2) $\tan \theta=\frac{3}{4}$ and $\cos \theta<0$

$\csc \theta=\frac{-5}{3}$
3) $\cos \theta=-\frac{4}{5}$ and $\sin \theta>\frac{0^{3}}{5}$ $\begin{array}{ll}\csc \theta=\frac{\sqrt{5}}{-2} & \sec \theta=\frac{5}{4} \\ \cot \theta=\frac{4}{3}\end{array}$ $\sec \theta=\sqrt{5}$

2. $\tan \theta=-\sqrt{3}$
3. $\csc \theta=2$

In order to get one answer we must restrict the domain.

$$
\begin{array}{ll}
\arcsin \theta & -90 \leq \theta \leq 90^{\circ}-\frac{\pi}{2}<\theta \leq \frac{\pi}{2} \\
\arccos \theta & 0 \leq \theta \leq 180^{\circ} \quad 0 \leq \theta \leq \pi
\end{array}
$$

$$
\arctan \theta-90^{\circ}<\theta<90 \quad 0<\theta<\frac{\pi}{2}
$$

$$
\operatorname{arccot} \theta \quad 0<\theta<180^{\circ} \quad 0<0<\pi
$$

arccsc and arcsec have the same domain as the reciprocal
we will understand this more when we graph.

Simplify

1) $\sec ^{-1}(-\sqrt{2})$
2) $\cot ^{-1} 0$
3) $\sin ^{-1} 1$

Composition of functions

1) $\csc ^{-1} \frac{2 \sqrt{3}}{3}$
2) $\sin ^{-1}(\sec \pi)$
3) $\cos \cot ^{-1} \frac{2}{3}$
4) $\sin \sec ^{-1} \frac{7 \sqrt{10}}{20}$

Write as an algebraic expression

5) $\cos \sin ^{-1} x$
6) $\sec \tan ^{-1} x$
7) $\sec \cos ^{-1} x$
