2. Solve
$$X^2 = 4$$
 $X = \pm 2$

Find all le Trig. functions given Point (2,3)

$$\frac{1}{3} \frac{(2.3)}{3} = \frac{2^{2} + 3^{2} = c^{2}}{2^{2} + 3^{2} = c^{2}}$$

$$\frac{1}{4 + 9 = c^{2}}$$

$$\frac{1}{13} = c$$

$$\frac{1}{3} \frac{3}{13} \frac{1}{13} \frac$$

$$\frac{\text{Corb} = \frac{3}{2}}{2} \quad \text{Sup} = \frac{\sqrt{13}}{2} \quad \text{Corb} = \frac{\sqrt{3}}{3}$$

$$\frac{\text{Corb} = \frac{2}{3}}{3} \quad \text{Corb} = \frac{2}{3}$$

2
$$(-5, 3)$$

$$-3^{2}+3^{2}=c^{2}$$

$$25+9=c^{2}$$

$$25+9=c^{2}$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 = 3134$$

$$34 =$$

c. tan $\Theta = -15/8$, in quadrant IV

d. csc $\Theta = 4$, in quadrant II

$$C=17$$

$$Sin\theta = -15$$

$$Cas Q = 8$$

$$8^{2}+15^{2}=C^{2}$$
 $64+2as=c^{2}$
 $\sqrt{289}=\sqrt{c}$
 $C=17$
 $Sin\theta=-15$
 $CSC\theta=\frac{17}{15}$
 $CSC\theta=\frac{17}{15}$
 $Sec\theta=-4\sqrt{5}$
 $Cos\theta=\frac{17}{15}$
 $Suc\theta=\frac{17}{15}$
 $Cos\theta=\frac{17}{15}$
 $Cos\theta=\frac{17}{15}$
 $Cos\theta=\frac{17}{15}$
 $Cos\theta=\frac{17}{15}$
 $Cos\theta=\frac{17}{15}$

In order to get one answer we must restrict the domain.

arccsc and arcsec have the same domain as the reciprocal

we will understand this more when we graph.

Simplify

1)
$$\sec^{-1}\left(-\sqrt{2}\right)$$

2)
$$\cot^{-1} 0$$

3)
$$\sin^{-1} 1$$

Composition of functions

$$1) \csc \sec^{-1} \frac{2\sqrt{3}}{3}$$

$$2) \sin^{-1}\left(\sec\,\pi\right)$$

3)
$$\cos \cot^{-1} \frac{2}{3}$$

4)
$$\sin \sec^{-1} \frac{7\sqrt{10}}{20}$$

Write as an algebraic expression

5) $\cos \sin^{-1} x$

6) $sec tan^{-1} x$

7) $\sec \cos^{-1} x$