Find the component form of $\overrightarrow{\mathrm{AB}}$. Then find the magnitude of $\overrightarrow{\mathrm{AB}}$.

1. $\mathrm{A}(2,4), \mathrm{B}(-1,3)$
2. $\mathrm{A}(4,-2), \mathrm{B}(5,-5)$
$\overrightarrow{A B}=\langle-3,-1\rangle$
$\overrightarrow{A B}=\langle 1,-3\rangle$
3. $\mathrm{A}(-3,-6), \mathrm{B}(8,-1)$
$\overrightarrow{A B}=\langle 11,5\rangle$
$\|\stackrel{\rightharpoonup}{A B}\|=\sqrt{10}$
$\|\overrightarrow{A B}\|=\sqrt{10}$
$\|\overrightarrow{A B}\|=\sqrt{146}$

Let $\mathrm{v}=\langle 2,-1\rangle$ and $\mathrm{w}=<-3,5\rangle$. Find u and sketch the vector operations geometrically.
4. $u=v+w$
5. $u=v-w$
6. $u=3 v$
$u=\langle-1,4\rangle$
$u=\langle 5,-6\rangle$
$u=\langle 6,-3\rangle$
see graphs below
7. $u=w-2 v$
8. $u=2 v+3 w$
9. $u=5 w-2 v$
$u=\langle-7\rangle$,
$u=\langle-5,13\rangle$
$u=\langle-19,2\rangle\rangle$

Find a unit vector for each vector.
10. $\mathrm{v}=<-3,4>$

$$
\frac{V}{\|v\|}=\left\langle-\frac{3}{5}, \frac{4}{5}\right\rangle
$$

11. $\mathrm{v}=<1,5>$

$$
\frac{v}{\|v\|}=\left\langle\frac{\sqrt{26}}{26}, \frac{5 \sqrt{26}}{26}\right\rangle
$$

Find the direction angle of each vector.
12. $u=2 i-5 j$
13. $u=-3 i-7 j$
14. $u=6 i-2 j$
$\theta=291.8^{\circ}$
$\theta=246.8^{\circ}$
$\theta=341.57^{\circ}$

Find the component form of each vector.
15. $||u||=20$, angle $=150^{\circ}$

$$
\langle-17.32,10\rangle
$$

16. $||\mathrm{u}||=10$, angle $=315^{\circ}$
$\left\langle 7.07^{\circ},-7.07^{0}\right\rangle$

Find v $\cdot \mathrm{w}$.
17. $v=5 i-2 j, w=-3 i+j$
-17
18. $v=3 i-9 j, w=2 i+j$
-3

Find the angle θ between v and w.
19. $v=3 i+2 j, w=7 i-5 j$
20. $v=2 i+3 j, w=7 i-j$

$$
\theta=69.2^{\circ}
$$

$$
\theta=64.4^{\circ}
$$

21. Find $u \cdot v$ if $\|u\|=8,\|v\|=12$, and the angle between u and v is 60°.

$$
48
$$

22. Find $u \cdot v$ if $\|u\|=4,\|v\|=5$, and $\theta=120^{\circ}$.

$$
-10
$$

23. Which pairs of vectors are orthogonal?
a. $v=\langle 3,-2>, w=<-1,2>$
b. $\mathrm{v}=\langle-2,0\rangle, \mathrm{w}=\langle 0,5\rangle$
c. $v=\langle-1,2\rangle, w=\langle 0,-1 / 2\rangle$
d. $v=<2,-3>, w=<-2,3>$
24. Find k so that u and v are orthogonal.
a. $u=3 i+2 j$
$\mathrm{v}=2 \mathrm{i}-\mathrm{kj}$

$$
K=3
$$

b. $u=-3 k i+5 j$
$v=2 i-4 j$

$$
k=-\frac{10}{3}
$$

25. Find the projection of u onto v, then find the vector component of u orthogonal to v.
a. $u=<-1,2>, v=<2,-3>$
b. $u=<4,2>, v=<1,-2>$

$$
\begin{array}{ll}
w_{1}=p r o j v u=\left\langle-\frac{16}{13}, \frac{24}{13}\right\rangle & u \cdot v=0 \\
w_{2}=\left\langle\frac{3}{13}, \frac{2}{13}\right\rangle & w_{1}=\langle 0,0\rangle \\
w_{2}=\langle 4,2\rangle
\end{array}
$$

