

Reciprocal	Identities	
$\csc x=$	$\tan x=$	$\sin x=$
$\sec x=$	$\cot x=$	$\cos x=$
Quotient Identities		

Oct 6-8:44 AM

Intro to Trigonometric Identities

EQ: How do I prove trigonometric expressions equivalent?

Oct 6-8:23 AM

What is an identity?
A statement that is valid for all values of the variables in the domain where the expressions are defined.

What are some identities that we are already familiar with from Algebra?

If $\csc x=7 / 4$ find $\sin x$
if $\cot x=\frac{2}{5 \sqrt{5}}$ and $\sin x=\frac{\sqrt{5}}{3} \quad$ find $\cos x$

$\cos ^{2} \theta+\sin ^{2} \theta=1$	$\cos ^{2} \theta+\sin ^{2} \theta=1$

Oct 6-9:18 AM

Ex 3:	$\frac{\tan x}{\sec x}$

Pythagorean Identities: Derive the Pythagorean Identity from a right triangle

Oct 6-9:15 AM

When simplifying a trig expression, try changing everything to terms of sine and cosine.

Example 1 : Simplify $\cos x \csc x$

$$
=\cos x \frac{1}{\sin x}
$$

$$
\begin{aligned}
& =\frac{\cos x}{\sin x} \\
& =\cot x
\end{aligned}
$$

Example 2: Simplify $\frac{\tan x \cos x}{}$

$$
\begin{aligned}
& =\frac{\tan x}{1} \cdot \frac{\cos x}{\sin x}=\sin x \\
& =\frac{\sin x}{\cos x} \cdot \frac{\cos x}{\sin x}=1
\end{aligned}
$$

Oct 6-9:07 AM

$$
\text { Ex 5: } \begin{aligned}
& \sin x+\cos x \cot x \\
&= \sin x+\cos x \frac{\cos x}{\sin x} \\
& \begin{aligned}
& \sin x \\
& \sin x \sin x+\frac{\cos ^{2} x}{\sin x} \\
&= \frac{\sin ^{2} x}{\sin \alpha}+\frac{\cos ^{2} x}{\sin x} \\
&= \frac{1}{\sin x}=\csc x
\end{aligned}
\end{aligned}
$$

$$
\text { Ex7 } \frac{\sin x \cos x}{1-\sin x}-\frac{1+\sin x}{\cos x}
$$

$$
\text { Ex7. } \frac{\cos x}{1+\sin x}+\frac{1+\sin x}{\cos x}
$$

$$
\begin{aligned}
& \text { Ex10 } \\
& \frac{\cos ^{2} x}{1-\sin x}
\end{aligned}
$$

$\tan \theta=1.38$ Find $\cot \left(\theta-\frac{\pi}{2}\right)$

$$
\tan \theta=\cot \left(\frac{\pi}{2}-\theta\right)
$$

odd $=\cot \left(-\left(\theta-\frac{\pi}{2}\right)\right)$

Proofs: When in doubt, change everything to sine and cosine. Ty y to orly change one side, not both. Start with the more complicated-looking side.

Example 1: Prove $\sin x \sec x=\tan x$ CHS

Sine odd

$$
\sin (-x)=-\sin (x)
$$

Cosine Even

$$
\cos (-x)=\cos (x)
$$

$$
\begin{array}{ll}
\text { tangent odd } & \text { rotational symmetry } \\
\tan (-x)=-\tan (x) & f(-\infty)=-f(\sigma)
\end{array}
$$

CSC odd

$$
\csc (-x)=-\csc (x)
$$

Sec Even

$$
\begin{aligned}
& \sec E v e n \\
& \sec (-x)=\sec (x)
\end{aligned}
$$

Cot odd

$$
\operatorname{Cot}(-x)=-\cot (x)
$$

Even
axis

$$
f(x)=f(-x)
$$ origin symmetry rotahiounl Symmetry

$$
\begin{aligned}
& \sin \theta=1.1 \quad \text { Find } \cos \left(\theta-\frac{\pi}{2}\right) \\
& \qquad \begin{aligned}
\sin \theta & =\cos \left(\frac{\pi}{2}-\theta\right) \\
\text { Even } & =\cos \left(-\left(-\frac{\pi}{2}+\theta\right)\right. \\
1.1 & =\cos \left(\theta-\frac{\pi}{2}\right)
\end{aligned}
\end{aligned}
$$

Example 2: Prove $\frac{\csc x}{\cot x}=\sec x$
LOS

$$
\begin{aligned}
\frac{1}{\sin x} & = \\
\frac{1}{\cos x} \frac{\sin x}{\sin x} \frac{\frac{\sin x}{\cos x}}{} & = \\
\frac{1}{\cos x} & = \\
\sec x & =\sec x
\end{aligned}
$$

Ex $\cot x+\sec x=\frac{\cos ^{2} x+\sin x}{\sin x \cos x}$

Example 1: $\tan ^{2} x+1=\sec ^{2} x \tan ^{2} x$
Example 1: $\frac{\tan ^{2} x+1}{\csc ^{2} x-1}=\sec ^{2} x \tan ^{2} x$
Example 3: Prove $\cot x+\sec x=\frac{\cos ^{2} x+\sin x}{\sin x \cos x}$

Oct 6-9:14 AM

Example 2: Prove $\cot ^{\sec x+\tan x}=\sin x$
Oct 6-9:20 AM


```
If }\operatorname{cot}0=-3\mathrm{ and }\operatorname{cos}0<
Find }Csc0\mathrm{ and tan }
```

```
If }\operatorname{sin}x=\frac{1}{6}\quad\operatorname{cos}x>
    Find}\operatorname{cot}x+\operatorname{sec}
```

$$
\begin{aligned}
& \frac{\cos ^{2} x}{1-\sin x} \cdot \frac{1+\sin x}{1+\sin x}=\frac{\cos ^{2} x(1+\sin x)}{1-\sin ^{2} x} \\
& =\frac{\cos ^{2} x(1+\sin x)}{\cos ^{2} x}=1+\sin x
\end{aligned}
$$

$$
\begin{aligned}
& \text { Simplify } \frac{1}{1+\cos x} \cdot \frac{1-\cos x}{1-\cos x} \\
& =\frac{1-\cos x}{1-\cos ^{2} x}=\frac{1-\cos x}{\sin ^{2} x}=\frac{1}{\sin ^{2} x}-\frac{\cos x}{\sin ^{2} x} \\
& =\csc ^{2} x-\frac{\cos x}{\sin x \sin x} \\
& =\csc ^{2} x-\cot x \csc x
\end{aligned}
$$

$$
\begin{aligned}
& \frac{4}{\sec x+\tan x} \cdot \frac{\sec x-\tan x}{\sec x-\tan x} \\
= & \frac{4(\sec x-\tan x)}{\sec ^{2} x-\tan 2 x} \\
= & \frac{4(\sec x-\tan x)}{\left(1+\tan ^{2} x\right)-\tan ^{2} x}=4(\sec x-\tan x)
\end{aligned}
$$

