| What is a | Determinant-a real number associated with |
| :--- | :--- |
| determinant? |  |
| a square matrix. The determinant of a |  |
| matrix $A$ is denoted by $\operatorname{det} A$ or $\|A\|$. |  |

Jul 18-1:49 PM

## Ex \#1 Evaluate each determinant

a) $\operatorname{det}\left[\begin{array}{ll}5 & 8 \\ 9 & 4\end{array}\right]$
b) $\operatorname{det}\left[\begin{array}{ll}3 & -4 \\ 7 & -2\end{array}\right]$
$=5(4)-9(8)$
$=3(-2)-(7)(-4)$
$=-52$
$=22$

Mar 20-4:08 PM


Jul 18-2:59 PM

## A. Determinant of a $2 \times 2$ matrix

How do I The determinant of a $2 \times 2$ matrix is the find the difference of the products of the determinant elements on the diaaonals. of a $2 \times 2$ ?

$$
\operatorname{det}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-c b
$$

Example: Ex. Evaluate the determinant of the matrix $\left[\begin{array}{ll}2 \\ 3 & \bar{x}_{4}^{1}\end{array}\right]$

$$
2(4)-3(-1)=11
$$

Jul 18-2:37 PM

## B. Determinant of a $3 \times 3$ matrix

How do I Rewrite the first two columns to the right of find the the determinant. Add the products of the determinant leading diagonals and subtract from this the of a $3 \times 3$ ? products of the opposite diagonals.


Jul 18-2:54 PM

$$
\begin{aligned}
& \text { Example: } \begin{array}{l}
\text { Ex. Evaluate: } \\
\left|\begin{array}{ccc}
-1 & 3 & 5 \\
0 & x & 3 \\
-2 & 2 & x
\end{array}\right|=x-4 \\
(-1 \cdot x \cdot x+3 \cdot 3 \cdot-2+5(0) 2)- \\
(-2 \cdot x \cdot 5+2 \cdot 3 \cdot 1+x \cdot 0 \cdot 3)=x \cdot 4 \\
\left(-x^{2}-18\right)-(-10 x-6)=x-4 \\
-x^{2}-18+10 x+6=x-4 \\
-x+4-x+4 \\
-x^{2}+9 x-8=0 \\
-\left(x^{2}-9 x+8\right)=0 \\
- \\
(x-8)(x-1)=0 \\
x=8,1
\end{array}
\end{aligned}
$$

Jan 11-11:30 AM

| C. Applications of Determinants |  |
| :--- | :--- |
| How can I | The determinant of a matrix can be used to <br> find the area of a triangle. <br> use <br> determinants? <br> If $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, and $\left(x_{3}, y_{3}\right)$ are vertices <br> of a triangle, the area of the triangle is: <br> Area $= \pm \frac{1}{2}\left\|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right\|$ |

Jan 11-11:39 AM

| Vocabulary: <br> What is an <br> identity <br> matrix? |  |
| :--- | :--- |
| Identity matrix - a square matrix with 1 's along <br> the leading diagonal and $O^{\prime}$ 's elsewhere. <br> - An identity matrix is denoted using $I$. |  |
| What is an <br> inverse? | Inverses - the square matrices $A$ and $B$ are <br> inverses of each other if their product <br> (in both orders) is equal to an identity matrix. <br> i.e. $A B=I$ and $B A=I$. <br> - Matrix $A$ has an inverse iff det $A \neq 0$ <br> - The inverse of matrix $A$ is denoted as $A^{-1}$. |
|  |  |

Mar 23-1:27 PM

Example: Find the inverse of each matrix and verify the

$$
\begin{aligned}
& \text { matrices are inverses. } \\
& A=\left[\begin{array}{cc}
1 & 3 \\
-1 & 2
\end{array}\right] \\
& B=\left[\begin{array}{ll}
6 & 2 \\
9 & 3
\end{array}\right] \\
& \operatorname{det}(A)=2+3=5 \checkmark \\
& \begin{aligned}
\left.A^{-1}=\frac{1}{5}\left[\begin{array}{cc}
2 & -3 \\
1 & 1
\end{array}\right]=\left[\begin{array}{cc}
2 & \frac{-3}{5} \\
\frac{1}{3} & \frac{1}{5}
\end{array}\right] \quad \begin{array}{r}
\text { det } B=6(3)-4 \\
=A^{-4} \\
\\
\hline
\end{array}\right] \\
\text { No inserse }
\end{aligned} \\
& {\left[\begin{array}{cc}
1 & 3 \\
-1 & 2
\end{array}\right] \cdot\left[\begin{array}{cc}
\frac{2}{5} & -\frac{3}{5} \\
\frac{1}{5} & \frac{1}{5}
\end{array}\right]} \\
& =\left[\begin{array}{cc}
\frac{2}{3}+\frac{3}{5} & -\frac{3}{5}+\frac{3}{5} \\
-\frac{2}{5}+\frac{2}{5} & +\frac{3}{5}+\frac{2}{5}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$



Dec 29-3:35 PM

## A. Find the inverse of a $2 \times 2$ matrix

How do I Given the matrix $A=\left[\begin{array}{ll}a & b \\ \text { find the } \\ \text { inverse of } & d\end{array}\right] \begin{gathered}\text { and assuming } \\ a d-c b \neq 0\end{gathered}$
inverse

$$
A^{-1}=\frac{1}{|A|}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]=\frac{1}{a d-c b}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

## B. Find the inverse of a $3 \times 3$ matrix

How do I Use a calculator! find the inverse of a $3 \times 3$ ?
Ex. Find the inverse of $\left[\begin{array}{ccc}4 & 0 & -1 \\ 6 & -2 & 0 \\ 3 & 1 & -4\end{array}\right]$

Verify they are inverses.


