Math Lab: Explore Transformations of the Sine Function

QUESTION

How do vertical displacement, phase shift, reflection, changes in amplitude, and changes in period affect the parent graph of a trigonometric function?

EXPLORE VERTICAL DISPLACEMENT

1. Graph each function in the given color and calculate its period.

$$
y=\sin x(\text { red }), \quad y=\sin (x)+1(\text { blue }), \quad y=\sin (x)-1 \text { (green) }
$$

2. Explain what happens to the graph when a constant is added to the sine function.
3. Explain what happens to the graph when a constant is subtracted from the sine function.
4. In the standard form of the sine function, what variable represents vertical displacement?

$$
y=a \sin b(x-h)+k
$$

5. Sketch the graph of $y=\cos x-2$ over the interval $[0,2 \pi]$.

6. Describe the transformation taking place in the graph of $y=\tan x-5$.
7. Graph each function in the given color and calculate its period.

$$
\left.y=\sin x(\text { red }), \quad y=\sin \left(x-\frac{\pi}{2}\right)(\text { blue }), \quad y=\sin \left(x+\frac{\pi}{2}\right) \text { (green }\right)
$$

8. Explain what happens to the graph when a constant is added to the x in the sine function.
9. Explain what happens to the graph when a constant is subtracted from the x in the sine function.
10. In the standard form of the sine function, what variable represents phase shift?

$$
y=a \sin b(x-h)+k
$$

11. Sketch the graph of $y=\cos (x-\pi)+1$ over the interval $[0,2 \pi]$.

12. Describe the transformations taking place in the graph of $y=\tan \left(x+\frac{\pi}{4}\right)-3$.

EXPLORE REFLECTION

13. Graph each function in the given color and calculate its amplitude.

$$
y=\sin x(\text { red }), \quad y=-\sin x(\text { blue })
$$

14. Explain what happens to the graph when the sine function is negative.
15. In the standard form of the sine function, what variable represents reflection?

$$
y=a \sin b(x-h)+k
$$

16. Sketch the graph of $y=-\cos x+2$ over the interval $[0,2 \pi]$.

17. Describe the transformations taking place in the graph of $y=-\tan \left(x-\frac{\pi}{6}\right)+1$.
18. Graph each function in the given color and calculate its amplitude.

$$
y=\sin x(\text { red }), \quad y=2 \sin x(\text { blue }), \quad y=\frac{1}{2} \sin x(\text { green })
$$

$$
\text { amplitude }=\quad \text { amplitude }=\quad \text { amplitude }=
$$

19. Explain what happens to the graph of a sine function when it is multiplied by a constant greater than 1.
20. Explain what happens to the graph of a sine function when it is multiplied by a constant between 0 and 1 .
21. In the standard form of the sine function, what variable represents amplitude?

$$
y=a \sin b(x-h)+k
$$

22. Sketch the graph of $y=3 \cos (x-\pi)$ over the interval $[0,2 \pi]$.

23. Describe the transformations taking place in the graph of $y=-\frac{1}{2} \sin x-3$.
24. Graph each function in the given color and calculate its period.

$$
\begin{array}{ccc}
y=\sin x(\text { red }), & y=\sin (2 x)(\text { blue }), & y=\sin \left(\frac{1}{2} x\right)(\text { green }) \\
\text { period }= & \text { period }= & \text { period }=
\end{array}
$$

25. Explain what happens to the period of a sine fünction when the angle is multiplied by a constant greater than 1.
26. Explain what happens to the period of a sine function when the angle is multiplied by a constant between 0 and 1 .
27. In the standard form of the sine function, what variable impacts period and in what way?

$$
y=a \sin b(x-h)+k
$$

28. Sketch the graph of $y=3 \cos 3 x$ over the interval $[0,2 \pi]$.

29. Describe the transformations taking place in the graph of $y=\tan (3 x-\pi)+2$.
